PEPIT是一种Python软件包,旨在简化对可能涉及梯度,投影,近端或线性优化oracels的大型一阶优化方法的最坏情况分析的最坏情况分析,以及它们的近似或布赖曼变体。简而言之,PEPIT是一种封装,可实现一级优化方法的计算机辅助案例分析。关键的潜在思想是施放执行最坏情况分析的问题,通常称为性能估计问题(PEP),作为可以在数字上解决的半纤维程序(SDP)。为此,只需要包用户才能像他们已经实现的那样写出一阶方法。然后,包裹处理SDP建模部件,并且最坏情况分析通过标准求解器进行数字地执行。
translated by 谷歌翻译
联邦学习(FL)是大规模分布式学习的范例,它面临两个关键挑战:(i)从高度异构的用户数据和(ii)保护参与用户的隐私的高效培训。在这项工作中,我们提出了一种新颖的流动方法(DP-SCaffold)来通过将差异隐私(DP)约束结合到流行的脚手架算法中来解决这两个挑战。我们专注于有挑战性的环境,用户在没有任何可信中介的情况下与“诚实但奇怪的”服务器沟通,这需要确保隐私不仅可以访问最终模型的第三方,而且还要对服务器观察所有用户通信。使用DP理论的高级结果,我们建立了凸面和非凸面目标算法的融合。我们的分析清楚地突出了数据异质性下的隐私式折衷,并且当局部更新的数量和异质性水平增长时,展示了在最先进的算法DP-Fedivg上的DP-Scaffold的优越性。我们的数值结果证实了我们的分析,并表明DP-Scaffold在实践中提供了重大的收益。
translated by 谷歌翻译
期望最大化(EM)算法是潜在变量模型推断的默认算法。与任何其他机器学习领域一样,潜在变量模型到非常大的数据集的应用使得使用高级并行和分布式架构。本文介绍了FEDEM,它是EM算法到联合学习背景的第一个扩展。 FEDEM是一种新的通信高效方法,其处理本地设备的部分参与,并且对数据集的异构分布具有稳健。为了缓解通信瓶颈,FedEM压缩适当定义的完整数据足够的统计数据。我们还开发并分析了FEDEM的延伸,以进一步纳入方差减少方案。在所有情况下,我们都会导出有限时间的复杂性范围,以便平滑非凸起问题。提出了数值结果以支持我们的理论发现,以及对生物多样性监测的联合缺失值估算的应用。
translated by 谷歌翻译
我们开发了一种新方法来解决中央服务器中分布式学习问题中的通信约束。我们提出和分析了一种执行双向压缩的新算法,并仅使用uplink(从本地工人到中央服务器)压缩达到与算法相同的收敛速率。为了获得此改进,我们设计了MCM,一种算法,使下行链路压缩仅影响本地模型,而整体模型则保留。结果,与以前的工作相反,本地服务器上的梯度是在干扰模型上计算的。因此,融合证明更具挑战性,需要精确控制这种扰动。为了确保它,MCM还将模型压缩与存储机制相结合。该分析打开了新的门,例如纳入依赖工人的随机模型和部分参与。
translated by 谷歌翻译
我们介绍了一个框架 - Artemis-,以解决分布式或联合设置中的学习问题,并具有通信约束和设备部分参与。几位工人(随机抽样)使用中央服务器执行优化过程来汇总其计算。为了减轻通信成本,Artemis允许在两个方向上(从工人到服务器,相反)将发送的信息与内存机制相结合。它改进了仅考虑单向压缩(对服务器)的现有算法,或在压缩操作员上使用非常强大的假设,并且通常不考虑设备的部分参与。我们在非I.I.D中的随机梯度(仅在最佳点界定的噪声方差)提供了快速的收敛速率(线性最高到阈值)。设置,突出显示内存对单向和双向压缩的影响,分析Polyak-Ruppert平均。我们在分布中使用收敛性,以获得渐近方差的下限,该方差突出了实际的压缩极限。我们提出了两种方法,以解决设备部分参与的具有挑战性的案例,并提供实验结果以证明我们的分析有效性。
translated by 谷歌翻译
Deformable image registration is a key task in medical image analysis. The Brain Tumor Sequence Registration challenge (BraTS-Reg) aims at establishing correspondences between pre-operative and follow-up scans of the same patient diagnosed with an adult brain diffuse high-grade glioma and intends to address the challenging task of registering longitudinal data with major tissue appearance changes. In this work, we proposed a two-stage cascaded network based on the Inception and TransMorph models. The dataset for each patient was comprised of a native pre-contrast (T1), a contrast-enhanced T1-weighted (T1-CE), a T2-weighted (T2), and a Fluid Attenuated Inversion Recovery (FLAIR). The Inception model was used to fuse the 4 image modalities together and extract the most relevant information. Then, a variant of the TransMorph architecture was adapted to generate the displacement fields. The Loss function was composed of a standard image similarity measure, a diffusion regularizer, and an edge-map similarity measure added to overcome intensity dependence and reinforce correct boundary deformation. We observed that the addition of the Inception module substantially increased the performance of the network. Additionally, performing an initial affine registration before training the model showed improved accuracy in the landmark error measurements between pre and post-operative MRIs. We observed that our best model composed of the Inception and TransMorph architectures while using an initially affine registered dataset had the best performance with a median absolute error of 2.91 (initial error = 7.8). We achieved 6th place at the time of model submission in the final testing phase of the BraTS-Reg challenge.
translated by 谷歌翻译
性能是软件最重要的素质之一。因此,已经提出了几种技术来改进它,例如程序转换,软件参数的优化或编译器标志。许多自动化的软件改进方法使用类似的搜索策略来探索可能改进的空间,但可用的工具一次只专注于一种方法。这使得比较和探索各种类型改进的相互作用是不切实际的。我们提出了Magpie,这是一个统一的软件改进框架。它提供了一个共同的基于编辑序列的表示,该表示将搜索过程与特定的改进技术隔离,从而实现了简化的协同工作流程。我们使用基本的本地搜索提供案例研究,以比较编译器优化,算法配置和遗传改善。我们选择运行时间作为我们的效率度量,并评估了我们在C,C ++和Java编写的四个现实世界软件上的方法。我们的结果表明,独立使用的所有技术都发现了重大的运行时间改进:编译器优化最高25%,算法配置为97%,使用遗传改进的源代码为61%。我们还表明,通过不同技术发现的变体的部分组合,可以获得多达10%的性能。此外,共同表示还可以同时探索所有技术,从而提供了分别使用每种技术的竞争替代方案。
translated by 谷歌翻译
本文介绍了一种机器学习方法,可以在宏观水平下模拟电动车辆的电力消耗,即在不存在速度轮廓,同时保持微观级别精度。对于这项工作,我们利用了基于代理的代理的运输工具来模拟了在各种场景变化的大芝加哥地区发生的模型旅行,以及基于物理的建模和仿真工具,以提供高保真能量消耗值。产生的结果构成了车辆路径能量结果的非常大的数据集,其捕获车辆和路由设置的可变性,并且掩盖了车速动力学的高保真时间序列。我们表明,尽管掩盖了影响能量消耗的所有内部动态,但是可以以深入的学习方法准确地学习聚合级能量消耗值。当有大规模数据可用,并且仔细量身定制的功能工程,精心设计的模型可以克服和检索潜在信息。该模型已部署并集成在Polaris运输系统仿真工具中,以支持各个充电决策的实时行为运输模型,以及电动车辆的重新排出。
translated by 谷歌翻译
深度异常检测已被证明是几个领域的有效和强大的方法。自我监督学习的引入极大地帮助了许多方法,包括异常检测,其中使用简单的几何变换识别任务。然而,由于它们缺乏更精细的特征,因此这些方法在细粒度问题上表现不佳,并且通常高度依赖于异常类型。在本文中,我们探讨了使用借口任务的自我监督异常检测的每个步骤。首先,我们介绍了专注于不同视觉线索的新型鉴别和生成任务。一部分拼图拼图任务侧重于结构提示,而在每个件上使用色调旋转识别进行比色法,并且执行部分重新染色任务。为了使重新着色任务更关注对象而不是在后台上关注,我们建议包括图像边界的上下文颜色信息。然后,我们介绍了一个新的分配检测功能,并与其他分配检测方法相比,突出了其更好的稳定性。随之而来,我们还试验不同的分数融合功能。最后,我们在具有经典对象识别的对象异常组成的综合异常检测协议上评估我们的方法,用细粒度分类和面部反欺骗数据集的局部分类和局部异常的样式异常。我们的模型可以更准确地学习使用这些自我监督任务的高度辨别功能。它优于最先进的最先进的相对误差改善对象异常,40%的面对反欺骗问题。
translated by 谷歌翻译
从数据中学到的分类器越来越多地用作安全是关键问题的系统中的组件。在这项工作中,我们通过称为安全订购约束的约束来提出针对分类器的正式安全概念。这些限制条件将分类器输出的类输出的顺序与输入的条件有关,并且表达足以编码文献中分类器安全规范的各种有趣的示例。对于使用神经网络实施的分类器,我们还提出了一种运行时机制,用于执行安全订购约束。我们的方法基于一个自我校正层,该层可证明,无论分类器输入的特征如何,它都可以产生安全的输出。我们将此层与现有的神经网络分类器组成,以构建自我校正网络(SC-NET),并证明除了提供安全的输出外,SC-NET还可以保证尽可能保留原始网络的分类精度。我们的方法独立于用于分类的神经网络的大小和体系结构,仅取决于指定的属性和网络输出的尺寸;因此,它可扩展到大型最新网络。我们表明,我们的方法可以针对GPU进行优化,从而在当前硬件上引入了少于1ms的运行时开销 - 即使在包含数十万个神经元和数百万参数的大型,广泛使用的网络上。
translated by 谷歌翻译